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Abstract
We derive a rational function that is an approximate solution to the three-
dimensional Poisson–Boltzmann equation, but show that no rational function
can be its exact solution. The approximate solution may be entirely adequate
for most purposes because the three-dimensional Poisson–Boltzmann equation
represents an unachievable state of equilibrium.

PACS numbers: 02.30.Hq, 02.60.Lj, 02.90.+p, 97.10.Cv

1. The Poisson–Boltzmann equation

Suppose that ρ is the mass density of a single-component (molecular mass = m) isothermal
(temperature = �) self-gravitating gas. The Poisson equation for the relationship between the
gravitational potential � and ρ is

∇2� = 4πGρ, (1)

where G is the gravitational constant. Let � = �(r) and ρ = ρ(r) be functions only of the
coordinate r. The Boltzmann distribution of the gas is then

ρ(r) = ρ(0) exp

[
−�(r)

σ 2

]
, (2)

where σ 2 = k�/m and k is the Boltzmann’s constant. Combining equations (1) and (2) gives
the Poisson–Boltzmann equation, which in n dimensions is

d2�n

dr2
+

n − 1

r

d�n

dr
= �2 exp

[
−�n

σ 2

]
, (3)

where �2 = 4πGρ(0). We label the potential and other variables with an n to designate a
generic dimension, or with a 1, 2 or 3 to designate a specific dimension. The terms in the
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Poisson–Boltzmann equation involve the dimensions of length (L) and time (T); they are �n

(L2T−2), r (L), � (T−1) and σ (LT−1). On substituting the dimensionless variables

�̌n = �n/σ
2, (4)

ζ = r�/σ, (5)

the dimensionless form of the Poisson–Boltzmann equation is

d2�̌n

dζ 2
+

n − 1

ζ

d�̌n

dζ
= �̌ ′′

n +
n − 1

ζ
�̌ ′

n = exp(−�̌n). (6)

By defining

ǧn = �̌ ′
n (7)

and

ρ̌n = exp(−�̌n), (8)

the second-order differential equation may be replaced by two first-order differential equations,

ǧ′
n +

n − 1

ζ
ǧn = ρ̌n (9)

and

ρ̌ ′
n = −ǧnρ̌n. (10)

The variables are ǧn, the relative specific force (acceleration) of the gravity field, and ρ̌n, the
relative mass density. Their initial conditions are

ǧn(0) = 0, (11)

lim
ζ→0

[
ǧ′

n +
(n − 1)ǧn

ζ

]
= nǧ′

n(0) = 1, (12)

ρ̌n(0) = 1. (13)

The analytic solution [1] for n = 1 is

ρ̌1 = sech2(ζ/
√

2), (14)

ǧ1 =
√

2 tanh(ζ/
√

2); (15)

and the analytic solution [2] for n = 2 is the rational function pair

ρ̌2 = 64

(8 + ζ 2)2
, (16)

ǧ2 = 4ζ

8 + ζ 2
. (17)
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2. An approximate three-dimensional solution

As we shall show in section 3, the solution to the Poisson–Boltzmann equation cannot be a
rational function if n = 3, but we can find a fairly good rational function approximation. As
ζ → ∞, ρ̌2 ∼ 64/ζ 4 (see equation (16)); this disposes us to assume that

ρ̌3 ∼ c/ζ k. (18)

Then, by equations (9) and (10),

ǧ3 ∼ k/ζ, (19)

and

ρ̌3 ∼ k/ζ 2. (20)

The asymptotic relations (18) and (20) are compatible only if c = k = 2, that is,

ρ̌3 ∼ 2/ζ 2. (21)

(For n = 2, we must substitute the refined asymptotic relation from equation (17)),

ǧ2 ∼ 4/ζ − 32/ζ 3, (22)

into equation (9) in order to get ρ̌2 ∼ 64/ζ 4.)
The density of a self-gravitating gas is symmetric about its centroid (ζ = 0), so ρ̌3 must

be an even function of ζ , that is, ρ̌3(ζ ) = ρ̌3(−ζ ). Also, because ρ̌3(0) = 1, ρ̌3 � 0 and
ρ̌3(ζ ) ∼ 2/ζ 2, we choose a ρ̌3 approximation that is of the form

ρ̌3 ≈ 1 + aζ 2

1 + bζ 2 + aζ 4/2
. (23)

Then, taking into account equations (10) and (12), we eliminate b,

ρ̌3 ≈ 1 + aζ 2

1 + [a + 1/2]ζ 2 + aζ 4/2
. (24)

We next expand this expression as a ζ 2 power series which we insert into equation (10), and
then the result into equation (9), and arrive at another power series for ρ̌3. The two ρ̌3 power
series have identical ζ 0 (unity) and ζ 2 terms. We finally choose a so that the ζ 4 terms are the
same in both series.

The solution is a = 1/60, so

ρ̌3 ≈ 1 + ζ 2/60

1 + (11/60)ζ 2 + (1/120)ζ 4
= 120 + 2ζ 2

(10 + ζ 2)(12 + ζ 2)
(25)

and

ǧ3 ≈ 2ζ

[
1

10 + ζ 2
+

1

12 + ζ 2
− 1

60 + ζ 2

]
= 2400ζ + 240ζ 3 + 2ζ 5

(10 + ζ 2)(12 + ζ 2)(60 + ζ 2)
. (26)

These rational function approximations (designated by rho and g) of ρ̌3 and ǧ3 are compared
graphically with the numerical solutions (designated by rhon and gn) over the range
0 < ζ � 100 in figure 1. The graphs compare the logarithms of the variables. Also
shown are the relative differences,

ρ̌3(num) − ρ̌3(an)

ρ̌3(num)
= 1 − ρ̌3(an)

ρ̌3(num)
(27)

and
ǧ3(num) − ǧ3(an)

ǧ3(num)
= 1 − ǧ3(an)

ǧ3(num)
. (28)

The largest relative difference for ǧ3 is 7%, and the largest relative difference for ρ̌3 is 24%,
but that is at ζ = 30 where ρ̌3 < 0.002.
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(a) (b)

(c) (d )

Figure 1. Comparison of the numerical (solid curves) and analytic (dashed curves) solutions of
the 3D Poisson–Boltzmann equation and their relative differences.

3. Rational function solution in three dimensions

If we try to improve the approximation by choosing ρ̌3 to be of the form

ρ̌3 ≈ 1 + aζ 2 + bζ 4

1 + cζ 2 + dζ 4 + bζ 6/2
, (29)

and solve for the coefficients that equate higher order terms in the ρ̌3 power series, we
discover that the technique no longer works: some of the coefficients turn out to be complex.
Nevertheless, the relatively good fit of the first approximation prompts one to ask whether
there can be a rational function that is an exact solution when n = 3. The answer is no.

Suppose that ρ̌3 is a rational function. Then because ρ̌3 is an even function of ζ that is
real on the real ζ -axis, and because it peaks at ρ̌3(0) = 1, its most general form is

ρ̌3 =
K∏

k=1

[1 + (ζ/ak)
2]pk . (30)

If pk is a positive integer, it is the order of a pair of conjugate zeros at ±iak; and if pk is a
negative integer, it is the order of a pair of conjugate poles at ±iak . Inserting equation (30)
into equation (10) gives

ǧ3 = −
K∑

k=1

2pkζ

ζ 2 + a2
k

. (31)

Each ±iak is a first-order pole of ǧn. Then, inserting equation (31) into equation (9) gives

ρ̌3 = −
K∑

k=1

2pk

(
3a2

k + ζ 2
)

(
ζ 2 + a2

k

)2 . (32)
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The relative densities ρ̌3 in equations (30) and (32) must be identical. But all zeros and poles
in equation (30) are second-order poles in equation (32). Since a point cannot be both a zero
and a pole, ρ̌3 can have no zeros. Also, all the poles of ρ̌3 must be of second order, that is,
pk = −2, so

ρ̌3 =
K∏

k=1

1

[1 + (ζ/ak)2]2
= 4

K∑
k=1

3a2
k + ζ 2

(
a2

k + ζ 2
)2 . (33)

As ζ → ∞, the first term on the RHS of this expression falls off as 1/ζ 4K,K � 1, while the
second term falls off as 1/ζ 2. These are incompatible, so the exact solution for ρ̌3 cannot be
a rational function.

4. Physical implications

If ρ̌n = 0, the solution to equation (9) is ǧn ∝ ζ 1−n, so in the far field where ρ̌n ≈ 0, �̌1 ∝
ζ, �̌2 ∝ log ζ and �̌3 ∝ −1/ζ . The depths of the potential wells for n � 2 are infinite,
whereas the depth of the potential well for n = 3 is finite; and so the escape velocity for n � 2
is infinite, whereas the escape velocity for n = 3 is finite. But there is no upper limit to the
molecular velocities of an isothermal gas which has a Maxwell distribution. The probability
densities of the high velocities in the far wings of the Maxwell distribution are small, but non
zero. Thus for n = 3, there is a leakage of gas that precludes long-term stability, even if
the leakage is negligible; there is no stable self-gravitating hydrostatic spherical model with
finite mass. This means, for example, that the Boltzmann distribution will not accurately
model the structure of an isothermal star. The solution to the Poisson–Boltzmann equation
will give, at best, a maximum envolope for ρ̌3(r). For this purpose, the numerical solution of
Chandrasekhar and Wares [3] appears to have no advantage over our approximate solution.

With the substitutions θ = −�n/σ
2, z = r/σ, k = n − 1 and δ = −�2, equation (3)

takes the form introduced by Chambré [2] and adopted by Zwillinger [4]:

d2θ

dz2
+

k

z

dθ

dz
= −δ exp(θ). (34)

Chambré used this equation to model thermal explosions in closed cylindrical (k = 1, n = 2)

and spherical (k = 2, n = 3) containers. Because the containers are closed, Chambré’s
numerical solution [3] for n = 3 is stable. The far field (ζ 	 1) is not of concern for these
models, so a series solution appears appropriate. For a spherical container, we expand �̌3 into
the form

�̌3 =
K∑

k=1

b2kζ
2k, (35)

and then evaluate the series for ρ̌3 using equation (8) and, independently (see equation (9)),
using

ρ̌3 = �̌ ′′
3 + 2�̌ ′

3/ζ. (36)

We solve for the b2k coefficients by equating the two ρ̌3 power series, and find

�̌3 = ζ 2

8
− ζ 4

120
+

ζ 6

1890
− 61ζ 8

1632 960
+ · · · (37)

ρ̌3 = 1 − ζ 2

8
+

31ζ 4

1920
− 367ζ 6

193 536
+

892 477ζ 8

4180 377 600
+ · · · (38)
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ǧ3 = ζ

4
− ζ 3

30
+

ζ 5

315
− 61ζ 7

204 120
+ · · · . (39)

These series converge slowly (if at all), but they may be adequate for modeling thermal
explosions in spherical containers. Nevertheless, the rational function approximation is also
accurate within the near field, and it is simpler to evaluate; so the series solution is of nugatory
interest except to signal the overall advantage of the rational function approximation.
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